library(plyr)
Dataset created to validate used locations by roe and red deer. For each of the five roe and red deer population 100 points were compared with a satellite layer (i.e., ground-truth). Hence, in total we did a validation of 500 points per species. For some locations we were not able to determine the ground-truth due to inclarity of the satellite layer. These locations have a missing value (NA) in the column ‘satellite’.
# load data
roe <- read.csv("../data/3_validation_gps/roe.csv",header=T, sep=',')
red <- read.csv("../data/3_validation_gps/red.csv",header=T, sep=',')
# change 0 and 1 to open and forest, respectively
roe[which(roe$tcd==1),]$tcd <- 'forest'
roe[which(roe$tcd==0),]$tcd <- 'open'
red[which(red$tcd==1),]$tcd <- 'forest'
red[which(red$tcd==0),]$tcd <- 'open'
roe[which(roe$satellite==1),]$satellite <- 'forest'
roe[which(roe$satellite==0),]$satellite <- 'open'
red[which(red$satellite==1),]$satellite <- 'forest'
red[which(red$satellite==0),]$satellite <- 'open'
roe$punto <- NULL
red$punto <- NULL
head(roe)
## population animals_id latitude longitude yearx tcd clc satellite correct
## 1 1 784 45.99947 11.08740 2006 forest 0 forest tcd
## 2 1 795 46.01295 11.08614 2005 forest 0 <NA> <NA>
## 3 1 768 46.00790 11.04297 2006 forest 0 open clc
## 4 1 800 46.06284 11.08369 2005 forest 0 open clc
## 5 1 776 45.96659 10.95757 2006 forest 0 forest tcd
## 6 1 784 45.99813 11.08744 2007 forest 0 forest tcd
nrow(roe)
## [1] 500
head(red)
## population animals_id latitude longitude yearx tcd clc satellite correct
## 1 3 130 46.36950 10.68811 2005 forest 0 forest tcd
## 2 3 137 46.36474 10.67057 2011 forest 0 open clc
## 3 3 129 46.39063 10.67036 2007 forest 0 forest tcd
## 4 3 135 46.47717 10.48563 2011 open 1 open tcd
## 5 3 116 46.53655 10.28553 2010 forest 0 forest tcd
## 6 3 116 46.53581 10.30131 2011 forest 0 forest tcd
nrow(red)
## [1] 500
## confusion matrices
#### roe ####
### absolute
(roe_t <- table(roe[,c('tcd','satellite')]))
## satellite
## tcd forest open
## forest 270 66
## open 58 74
### proportion
(roe_p <- prop.table(roe_t))
## satellite
## tcd forest open
## forest 0.5769231 0.1410256
## open 0.1239316 0.1581197
#### red ####
#### absolute
(red_t <- table(red[,c('tcd','satellite')]))
## satellite
## tcd forest open
## forest 228 43
## open 46 158
#### proportion
(red_p <- prop.table(red_t))
## satellite
## tcd forest open
## forest 0.48000000 0.09052632
## open 0.09684211 0.33263158